The Heparan Sulfate Proteoglycan Syndecan Is an In Vivo Ligand for the Drosophila LAR Receptor Tyrosine Phosphatase

نویسندگان

  • A. Nicole Fox
  • Kai Zinn
چکیده

BACKGROUND Receptor tyrosine phosphatases (RPTPs) are essential for axon guidance and synaptogenesis in Drosophila. Each guidance decision made by embryonic motor axons during outgrowth to their muscle targets requires a specific subset of the five neural RPTPs. The logic underlying these requirements, however, is still unclear, partially because the ligands recognized by RPTPs at growth cone choice points have not been identified. RPTPs in general are still "orphan receptors" because, while they have been found to interact in vitro with many different proteins, their in vivo ligands are unknown. RESULTS Here we use a new type of deficiency screen to identify the transmembrane heparan sulfate proteoglycan Syndecan (Sdc) as a ligand for the neuronal RPTP LAR. LAR interacts with the glycosaminoglycan chains of Syndecan in vitro with nanomolar affinity. Genetic interaction studies using Sdc and Lar LOF mutations demonstrate that Sdc contributes to LAR's function in motor axon guidance. We also show that overexpression of Sdc on muscles generates the same phenotype as overexpression of LAR in neurons and that genetic removal of LAR suppresses the phenotype produced by ectopic muscle Sdc. Finally, we show that there is at least one additional, nonproteoglycan, ligand for LAR encoded in the genome. CONCLUSIONS Taken together, our results demonstrate that Sdc on muscles can interact with neuronal LAR in vivo and that binding to Sdc increases LAR's signaling efficacy. Thus, Sdc is a ligand that can act in trans to positively regulate signal transduction through LAR within neuronal growth cones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The HSPGs Syndecan and Dallylike Bind the Receptor Phosphatase LAR and Exert Distinct Effects on Synaptic Development

The formation and plasticity of synaptic connections rely on regulatory interactions between pre- and postsynaptic cells. We show that the Drosophila heparan sulfate proteoglycans (HSPGs) Syndecan (Sdc) and Dallylike (Dlp) are synaptic proteins necessary to control distinct aspects of synaptic biology. Sdc promotes the growth of presynaptic terminals, whereas Dlp regulates active zone form and ...

متن کامل

Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148

Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstrea...

متن کامل

Dendritic space-filling requires a neuronal type-specific extracellular permissive signal in Drosophila.

Neurons sometimes completely fill available space in their receptive fields with evenly spaced dendrites to uniformly sample sensory or synaptic information. The mechanisms that enable neurons to sense and innervate all space in their target tissues are poorly understood. Using Drosophila somatosensory neurons as a model, we show that heparan sulfate proteoglycans (HSPGs) Dally and Syndecan on ...

متن کامل

Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin

Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson's disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immob...

متن کامل

Drosophila syndecan: conservation of a cell-surface heparan sulfate proteoglycan.

In mammals, cell-surface heparan sulfate is required for the action of basic fibroblast growth factor, fibronectin, antithrombin III, as well as other effectors. The syndecans, a gene family of four transmembrane proteoglycans that participates in these interactions, are the major source of this heparan sulfate. Based on the conserved transmembrane and cytoplasmic domains of the mammalian synde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005